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Statistical Mechanics of Flux Lines in 
High-T c Superconductors 
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A theory of the entangled flux liquids which arise in the new high-T c super- 
conductors is reviewed. New physics appears because of the weak interplanar 
couplings and high critical temperatures in these materials. Flux line wandering 
melts the conventional Abrikosov flux lattice, and leads to an entangled vortex 
state whose statistical mechanics is closely related to the physics of interacting 
bosons in two dimensions. The phase diagram as a function of magnetic field 
and temperature is discussed, and it is argued that an entangled vortex liquid 
appears just above Hcl at all nonzero temperatures. The decay of vortex line 
correlations in the entangled liquid state is controlled by the superfluid excita- 
tion spectrum of the bosons. Line wandering produces drastic changes in the 
B(H) constitutive relation near Hc1. 

KEY WORDS: Superconductors; flux lines; bosons. 

1. I N T R O D U C T I O N  

One of the many fascinations of the CuO2-based superconductors (1~ is the 
possibility of novel fluctuations effects due to the high critical temperatures 
and small coherence lengths. Interesting modifications of the standard 
BCS-based Ginzburg-Landau mean-field theory may be expected at Tc in 
zero field, (2) and when the Abrikosov flux lattice forms with decreasing 
temperatures a t  Hc2 .(3) Although fluctuations are usually limited to the 
immediate vicinity of critical points, it was recently argued that fluctuations 
in the high-T c materials lead to a new entangled flux liquid phase in a 
magnetic field, due to flux line wandering as vortex filaments traverse the 
sample. (4, 5) 
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There are now experiments indicating that the usual Abrikosov flux 
lattice is in fact melted over a significant portion of the (H, T) plane: 
Vibrating reed experiments of Gammel et aL (6) have found a striking signal 
suggestive of flux lattice melting in single crystals of Bi2SrzCaCu208 
(BSCCO) at temperatures well below the onset of the Meissner effect. Low- 
field flux-flow resistivity measurements (also on bismuth compounds) by 
van Dover et aL (7) show no threshold behavior for T =  50-80 K, indicative 
of vortices which flow freely without a shear modulus in the presence of 
weak pinning. These measurements are consistent with earlier observations: 
Although flux quanta (decorated via the Bitter technique) were observed 
emerging from a sample of YBazCu307 (YBCO) at T = 4 . 2 K ,  no flux 
patterns could be discerned at T =  77 K, possibly due to time-dependent 
flux wandering in an equilibrated flux liquid. (8) 

Melted flux liquids are already familiar from discussions of two-dimen- 
sional superconducting films: Dislocation-mediated melting (see, e.g., ref. 9) 
of the flux lattice leading to both ordinary and hexatic liquid phases of 
essentially point vortices was explored theoretically several years ago by 
Fisher. ~176 The novelty of high-To superconductors lies in the possibility of 
a melted liquid of entangled line defects in three dimensions. It was argued 
in refs. 4 and 5 that the high-To materials are especially likely to exhibit an 
entangled liquid regime on the basis of an analogy with superfluidity of 
boson world lines in 2 + 1 dimensions. A related analogy was proposed by 
Fisher and Lee, (m who applied duality transformations to a lattice model 
of a superconductor. These theories also allow for a "disentangled flux 
liquid" regime, which would be the three-dimensional analogue of the 
liquid of point vortices discussed above. 

In this paper I review these new theoretical developments. The starting 
point is the Gibbs free energy for N flux lines (see Fig. 1) whose positions 
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Fig. 1. Schematic of vortex lines in a slab of thickness L. The trajectory of the ith vortex 
along the z axis is described by the function ri(z). 
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with a field H along the z direction (perpendicular to the C u O  2 planes) in 
a sample length L are given by ri(z) = (xi(z), y~(z)), i= 1,..., N. We work 
in the London limit, since the ratio of the penetration depth 2 to the 
coherence length ~ is typically quite large, ~c = 2/4 ~ 102. If el is the energy 
per unit length of a single flux line, and ~bo = 2rchc/2e is the flux quantum, 
the energy reads (s) 

( Hr r 2 L (r~ dz 
G= _~1-- 47"~ :NL~-8--~ i~ j fo K~ ~. / 

dz dz (1) 
i = 1  

where r 0 = r  i - r y  and Ko(x ) is the modified Bessel function, Ko(x)~ 
(n/2x) m e -x for large x. For an isotropic superconductor, the last term 
comes from the expansion of the total line energy, E~= 
el S L (1 + Idri/dz]2) 1/2 dz. In this case, gl = el. For the anisotropic layered 
compounds under consideration here, gl is considerably smaller, (s) 

M• 
g, = ~ ~1 (2) 

where M .  is the in-plane effective mass, and Mz ~ 102M• is the much 
larger effective mass describing the weak coupling between the planes. Con- 
ventional treatments of the transition at Hcl assume that the vortices form 
a triangular lattice of rigid rods with a real density n = B/Co parallel to the 
z axis, so that the last term of (1) vanishes. Flux lines begin to penetrate 
when the first term changes sign, i.e., when H>~ Hcl = 4 r r e l / q ~  o.  

Balancing the first two terms then leads to (12'13) 

2 o{lnF 
B = ~  L4~22(H_Hc1) j (3) 

for H close to He1. Although this approximation works well for conven- 
tional superconductors, it fails in high-T~ materials due to the elevated 
temperatures and the small value of g~. I shall restrict attention here to 
single-crystal samples which are either sufficiently pure or at sufficiently 
high temperatures so that pinning by impurities can be neglected. Research 
on the effects of disorder is still rapidly developing, and is reviewed briefly 
in ref. 5. 

A full statistical treatment of the partition function associated with 
Eq. (1) entails integration of exp( -G/kBT)  over all vortex trajectories 
{r~(z)}. The partition function, for example, is 

1 
�9 f ~rN(z)e -G/kBr (4) Z =  ~, ~.T f @ r , ( z ) . .  

N = O  
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The Abrikosov mean-field theory which replaces flexible vortex lines by 
rigid rods is similar to the Frank-van der Meer theory of misfit disloca- 
tions near the commensurate-incommensurate transition in, e.g., krypton 
adsorbed on graphite. This zero-temperature theory becomes incorrect at 
finite temperatures due to dislocation line wandering. (14) We can estimate 
when the Abrikosov theory breaks down from a simple random walk 
argument. (4) We consider a single flux line r(z) and determine how far it 
wanders perpendicular to the z axis as it traverses the sample. The relevant 
path integral is 

i,(z> ,(0>,'exp[ 
( I r ( z ) -  r(O)l 2) = ~1 L(dr~2ds 1 

f ~ r ( s ) e x p  [ 2k--sBT fo \ d s J  

2k8 T 
- - - { z l  (5) 

g~ 

which shows that the vortex "diffuses" as a function of the timelike 
variable z, 

(Ir(z) - r(0){ =) ~/2 -_ (2Dz),/2 (6) 

with diffusion constant 

kBT M• 47:kBT 
D = - -  - (7) 

gl Mz r 

At T = 77 K, we take Hci ~ l02 G and M=/M• ~ l02 and find 
D = l0 -6 cm, so that vortex lines wander a distance of order 1 um while 
traversing a sample of thickness 0.01 cm. 

These close encounters will occur quite frequently in fields of order 
1(~100 KG, where vortices are separated by distances of order 500 ~ or 
less. Collisions between neighboring vortices must now be taken into 
account. As shown in ref. 4, this effect dominates the weak repulsive inter- 
action in Eq. (1) close to H d in sufficiently thick samples. More generally, 
we can define an "entanglement correlation length" 

~ - -  (8) 
2Dn 2k 8 Tn 

which is the spacing between collisions in a vortex liquid areal density n = 
B/qk o. Collisions and entanglement of vortex lines will significantly alter the 
Abrikosov theory whenever 

L>>~= (9) 
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2. A N A L O G Y  W I T H  BOSON STATISTICAL M E C H A N I C S  IN 
T W O  D I M E N S I O N S  

It is not hard to show that the transfer matrix connecting neighboring 
constant-z slices of the partition function (4) is just the exponential of the 
N-particle Hamiltonian operator in imaginary time for quantum mechani- 
cal particles interacting with a potential proportional to Ko(r/2). Indeed, 
Eq. (4) is just the imaginary-time Feynman path integral (~5~ for this 
problem with free boundary conditions for the particle world lines. The 
statistical mechanics as L ~ ~ will be dominated by the ground-state wave 
function. Although there is no a priori requirement that the solutions of 
this Schr6dinger equation obey boson or fermion statistics, one can show 
quite generally that the ground state wave function is bosonic. (~5) 

To extend this analogy to finite L, it is helpful to first consider the 
special experimental geometry with a toroidal magnetic field shown in 
Fig. 2. The vortex trajectories {ri(s)} are now functions of arc length s 
around the torus instead of z. The partition function differs from Eq. (4) in 
that we must now impose periodic boundary conditions on the vortex 
lines: a configuration of vortices in any given circular cross section must 
return to itself when the vortex lines are followed around the torus. To 
completely sample the allowed phase space, we must sum over different 
ways of connecting the vortices as they traverse the circuit. The partition 
function (4) is replaced by 

;, Z t= ~ ~,, P [ r l ( o ) ]  
N = O  t ( L )  = 

X f ~rU(s)e--a/kBr 
r N ( L )  = P[rN(O)] 

Fig. 2. 

(~o) 

Toroidal superconducting sample in a toroidal magnetic field for which the analogy 
with the statistical mechanics of two-dimensional bosons becomes exact. 
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where we have imposed periodic boundary conditions and summed over 
permutations P in contrast to the free boundary conditions implicit in (4). 
The parameter s runs from zero to L, where L is the average circumference 
around the torus. The effects of inhomogeneities in this circumference, as 
well as of inhomogeneities in the magnetic field, are discussed in ref. 5. 

As given by Eq. (10), the partition function is identical to the 
imaginary-time Feynman path integral (15) for the grand canonical partition 
function of a fluid of interacting bosons in two dimensions with chemical 
potential/~ = Hq)o /4rr -  ~1. The trajectories of vortices around the torus are 
isomorphic to boson world lines. The thermal energy kB T plays the role of 
h, while the circumference L corresponds to the distance /3h in the 
imaginary time direction. The parameter gl plays the role of the boson 
mass. This analogy, which is summarized in Table I, clearly shows why 
vortex lines are interesting in high-Tc superconductors: these materials 
allow us to explore a world of exceptionally light (gl ~ el) bosons in which 
"Planck's constant" (i.e., kB T) is ten times larger than in conventional 
materials. Because gl tends to zero as T ~  T c along the Hc1 curve ~I2'13), the 
boson "mass' can be made arbitrarily small. The importance of vortex line 
fluctuations is determined in the boson language by the "thermal de Broglie 
wavelength" AL, which translates according to Table I into 

Except for numerical factors, this is the vortex diffusion distance (6) with 
z = L. Quantum fluctuations begin to become important for bosons when 
A L > n -1/2. They dominate the physics for AL >> n 1/2, which is equivalent 
to Eq. (9). 

Figure 3 shows the expected phase diagram for two-dimensional 
bosons as a function of "chemical potential" (H-Hc1)  and "temperature" 
(L-1). The real temperature is held fixed at T<  Tc. A liquid-gas critical 
point is absent, because we have assumed a purely repulsive pair potential. 

Table I. Detailed Correspondence of 
the Parameters of Mel ted  Flux Liquid wi th  the Mass, 

Value of Planck's Constant, Reciprocal Temperature 13, and 
Potential of Two-Dimensional Bosons 

Vortex lines ~.1 k B T L HC/)o/4Zr - et (~b2/8rc222) Ko(r/z) 

Two-dimensional  Boson pair 
Bosons m h /~h p Potential 
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Fig. 3. Schematic phase diagram for vortex lines in a toroidal geometry as a function of 
"chemical potential" H-He1 and "temperature" L -1. Here, L is the average circumference of 
the torus in Fig. 2. 

The meaning of the "crystalline," "normal liquid," and "superfluid liquid" 
phases for Abrikosov flux lines is illustrated schematically in Fig. 4. The 
large dots show where the vortex lines pierce, say, the s = 0 circular cross 
section of the torus in Fig, 2. The lines show the vortex positions in subse- 
quent cross sections as they traverse the interior of the torus and return to 
the initial cross section. Figure4a represents a toroidal Abrikosov flux 
lattice, in which the vortices typically make only small excursions from the 
sites of a triangular lattice. Figure 4b represents a disentangled flux liquid 
characterized by somewhat larger excursions of the vortices and no 
crystalline order in their average positions. In this case, the torus is filled 
with a liquid of disconnected flux bracelets. Figure4c represents an 
entangled flux liquid in which vortices repeatedly exchange places in a 
complicated dance as they traverse the torus. 

The elegant picturd 15) of a superfluid liquid embodied in Fig. 4c has 
been confirmed in some striking computer simulations of Ceperley and 
Pollock in both two and three dimensions. (16) The beauty of the high-Tc 
superconductors is that Feynman's artificial imaginary time variable 
becomes real and directly accessible to experiments. In its entangled 
"superfluid" phase, the flux liquid in a torus looks like a mangled spiral of 
flux lines which makes many turns around the torus before repeating itself. 
A finite fraction of the vortex loops are connected together in such long 
cycles, which should have important consequences for flux flow resistivity 
in the presence of a dilute concentration of pinning centers. The dashed 
curve in Fig. 3 is a line of Kosterlitz-Thouless transitions from an 
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(a) 

CRYSTALLINE 
SOLID 

(b) 

NORMAL 
LIQUID 

(c) 

SUPERFLUID 
LIQUID 

Fig. 4. Trajectories ri(s) swept out by vortex lines within a circular cross section of the torus 
in Fig. 2. All vortices occupy approximately the same relative position within the cross section 
for all values of s within the Abrikosov flux lattice phase (a). These lines form disentangled 
flux bracelets in the normal liquid phase, but may wander appreciably during their circuit 
around the torus, as shown in (b). In superfluid phase (c), the flux lines link up, and it may 
require many circuits around the torus before a flux line returns to its starting point. 

entangled flux liquid to a disentangled one. Flux flow resistivity will be 
suppressed in an entangled flux liquid with a few strong pinning centers, 
even though there is no shear modulus. 

Figure 5 shows the Abrikosov flux lattice, the disentangled flux liquid, 
and the entangled flux liquid as they would appear in a conventional 
experimental geometry, with free boundary conditions on the vortex lines. 
As discussed above, boundary conditions should be irrelevant as the 
sample thickness tends to infinity. It can be shown (5) that the entangled 
flux liquid is indistinguishable from a "superfluid" with periodic boundary 
conditions whenever (9) is satisfied. It is possible, however, that the 
Kosterlitz-Thouless transition discussed above is smeared out with free 
boundary conditions, as suggested by Fisher and Lee. (11) It may then be 
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(b) 

ABRIKOSOV 
FLUX 
LATTICE 

DISENTANGLED 
FLUX 
LIQUID 

~/.-= '. ENTANGLED 

LIQUID 

(c) 
Fig. 5. Analogues of the three phases shown in Fig. 6 for a slab geometry with free, rather 
than periodic boundary.conditions. In contrast to the case of periodic boundary conditions, 
there is not necessarily a sharp phase transition between (b) and (c). 

better to speak of entangled an disentangled flux liquid regimes instead of 
phases. 2 The crossover between these two regimes will occur when 

r  (12) 

i.e., when the "thermal de Broglie wavelength" A L is comparable to the 
vortex line spacing. (4) 

3. PHASE D I A G R A M S  

I have argued that flexible vortex lines can exist in crystalline, 
entangled flux liquid, or disentangled flux liquid states. I now discuss where 
these phases may be expected to occur in the (H, T) phase diagram in 

2 Note, however, that this issue is not yet settled in the closely related problem of entangled 
polymer melts, where there may actually be a phase transition as a function of the 
polymerization index N. (17) There are, moreover, subtle effects associated with topological 
entanglement of interacting line defects special to 2 + 1 dimensions; these have no analogue 
in higher dimensions, where braided world lines can always disentangle. 
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typical high-T~ materials. I shall focus primarily on samples whose thick- 
ness L in the field direction is large, so that only the crystalline and 
entangled flux liquid phases need to be considered (see Fig. 3). The melting 
of the flux lattice will be discussed in terms of the Lindemann criterion. I 
point out that the Lindemann criterion becomes invalid at sufficiently small 
fields, and argue that a melted flux liquid will always exists at any finite 
temperature sufficiently close to H,q. (4) 

3.1. Continuum Elastic Theory and the Lindemann Criterion 

To discuss melting of a triangular flux lattice, we assume that the 
external field is aligned with the z direction, and describe the trajectory of 
the ith vortex by a function ri(z). If the average position of the ith vortex 
in the triangular lattice discussed above is denoted by Ri, we can define a 
two-dimensional displacement field u(R~, z) by 

ri(z) = R i  + u(Ri, 2) (13) 

In the continuum limit, this displacement becomes a function u --- u(x, y, z). 
The excess free energy 6G{u(r)} associated with small gradients of u is (18) 

1 I +K(0U~2~k~zJ j (14) (~G{u(r)} =~ f d3y 2#u~ +2u2~ 

where 

1 (Ou~ ,~u~'~ 
~,/~=x, y (15) 

is the symmetrized two-dimensional strain matrix, # and 2 are Lain6 
coefficients, and K is a tilt elastic constant. 

As pointed out by de Gennes and Matricon, two constraints on these 
three elastic constants are provided by the macroscopic magnetic proper- 
ties of the material. The bulk modulus of the line lattice is (18) 

9 2 
# + 2 ~ - -  (16) 

4~ 

More generally, the sum # + 2 is given by # + 2 = B~/4rc#z, where #z = 
dB(H)/dH is the longitudinal magnetic permeability. 

For isotropic superconductors, the tilt modulus is ~s) 

HB 
K -  (17) 

4r~ 
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The tilt modulus will be much smaller, however, for anisotropic high-T~ 
superconductors with weakly coupled planes. For H[Is a reasonable 
guess is (5) 

K M• HB 
M~ 4~ (18) 

Note that K vanishes as M j  I for large Mz, as is physically reasonable 
when the coupling between CuO2 planes tends to zero. If the ratio M• z 
is estimated from the upper critical fields parallel and perpendicular to the 
z axis [M• = II - 2 (Hc2/Hc2) ], one finds M./M~IO -2. The tilt modulus is 
clearly bounded above by the isotropic result (17). For H>> Hcl, we can set 
B = H i n  (18). 

The only elastic constant not determined directly by the magnetic 
properties is the shear modulus. The shear modulus is much smaller than 
the bulk modulus for most regimes of interest, and actually vanishes near 
He2, as shown by Labusch (19) 

p ~ 7  1 0 - 3 ( / ~ 2 )  2 1 -  2 
x - - ( - - - H ~ 2 ~  (19) 

We can use (19) to approximate # for �89 <~ H<Hc> For the opposite 
limit of He1 < H <  �89 we can use (s) the result of Fetter et al. (2~ 

1 Bq~o 
P ~ 4  (4~2) 2 (20) 

These are zero-temperature results for shear distortions of triangular 
Abrikosov lattices with flux lines regarded as rigid rods. At finite tem- 
peratures, the random-walk-like vortex fluctuations discussed elsewhere in 
this review can produce (potentially important) renormalizations of both 
the shear and the tilt moduli. 

We are now in a position to estimate the mean-square displacement of 
a flux line, i.e., 

(ju(ro)12) =.~ ~u(r)  lu(ro)l 2 e ~G/~Br 
~u(r)e  -aG/e"~ 

=f d3q C kBT kBT ] (21) 
1 + ;qz +/(qz 

where q2 -qx- 2 +qy.2 We take the cutoff to infinity in the z direction, and 
impose for simplicity a circular cutoff A in the (x, y) plane. We choose 
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A = (4rm) t/2, where n is the vortex line density, which conserves the area of 
the hexagonal Brillouin zone. The mean-square displacement is then 

_(n~ll2F kBT k.T ] 
(lu(ro)l 2 ) - \ ~ - ~ }  L ~  + [ ( 2 # + 2 ) K ]  1/2 (22 ) 

Because the shear modulus tends to zero at He2, (lu(r)12) diverges in this 
approximation, suggesting that the Abrikosov flux lattice may melt, as 
originally pointed out by Labusch. (19) The shear modulus is small relative 
to the bulk modulus at all fields, so we can always neglect the second term 
in Eq. (22). Upon inserting the estimates (19) and (18) for # and K, we find 

( n ~  m 
(]u(r)12) ~ \ ~ j  kBT 

~(12~kBT){ Mz )1/2__hl/2 d 2 (23) 
\MI4 oHJ (l-h) 

where d ~  ((Jo/B) ~/z is the spacing between vortex lines, and the reduced 
field h = H/H~2. 

Taking as parameters for BSCCO ~c=2• 102 , H~2(T= 77 K ) =  
2• 104Oe, and (MJM• we find that the root-mean-square 
fluctuation in the line displacement at liquid nitrogen temperatures is 

h i/4 
(lul2)1/2 ~0"2 (1 - h )  1 / ~  d (24) 

Since most solids melt when the rms displacement becomes of order 1/10 
of the interparticle spacing, the flux lattice in the BSCCO compounds 
should indeed be melted for a wide range of fields, (8) at least for H II 8. 
Inserting parameters for YBCO suggests that it will be necessary to take H 
considerably closer to H<2 to obtain melting, (s) again in accordance with 
experiment.~8) 

Although these results are encouraging, it is worth pointing out that 
the Lindemann condition is a criterion, and not a theory of melting. It does 
not attempt to explain the melting mchanism in detail, nor does it provide 
an explanation of the apparently continuous changes during melting obser- 
ved by Gammel et aL ~8) As discussed above, the Lindemann criterion 
assumes wave vector-independent elastic constants, which can be a gross 
oversimplification, especially if fluctuations are important. The integral in 
(21) is in fact dominated by q ~  1/d. A more accurate theory would use 
wave vector-dependent elastic constants under the integral sign in 
Eq. (21).(s) This has been done by Houghton et al., ~21~ who generalize non- 
local elastic constants derived by Brandt and Essman. ~22) As pointed out by 
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Houghton et al., there are significant corrections to the Lindemann 
criterion due to model effects in high-T~ materials unless H is fairly small. 
These nonlocal effects act to enhance the fluctuation-induced melting con- 
sidered above. By using the Lindemann ratio as a fitting parameter (they 
find (u2) ~/2 =0.4d at melting), these authors are able to obtain good fits 
to the melting curves of ref. 6 for both YBCO and BSCCO. 

3.2. Shape of the Melt ing Curve Near He1 

The Lindemann analysis sketched above cannot be correct in the 
vicinity of He1, i.e., when the flux line spacing is of order the London 
penetration depth or more. This is the regime of most flux decoration 
experiments. (8) The classical theory, based on energetic considerations 
alone, predicts that # ~ Z ~ e x p ( - d / 2 )  as the vortex separation d ~  (30. (22) 

There are, however, important entropic effects due to flux line wandering 
which dominate over flux line interaction energies in the dilute limit. In this 
section, I show that these entropy effects always destabilize the flux lattice 
relative to an entangled flux liquid sufficiently close to Hal. (4) This result is 
implicit in Fig. 3, where a "superfluid" (i.e., entangled flux liquid) phase 
exists over a range of H - H c 1  values when L = m. Zero-point motion 
always melt boson crystals with a purely repulsive pair potential (provided 
it falls off faster than 1/r 2) in the dilute limit. 3 

As discussed in the Introduction, collisions between vortex lines are 
important whenever Eq. (9) is satisfied. In the crystalline phase~ each line 
will typically wander until it is reflected backward by a collision with one 
of its six near neighbors. Taking over the argument of Coppersmith et al. 
for domain walls in two dimensions, (14) we note that each collision reduces 
the entropy in the partition function (4) relative to a noninteracting system 
by k s l n  q, with q >  1. Here, q is the amount by which the number of 
choices available to the random walking flux line is reduced by each colli- 
sion. If the set of allowed vortex positions in each constant-z cross section 
is assumed for simplicity to be a fine mesh triangular lattice, one might 
take, e.g., q = 6/3 = 2. Since the spacing {z between collisions in the z direc- 
tion is given by Eq. (8), the total number of collisions in a sample of thick- 
ness L is of order (L/~z)N~ (LA)nZks T/g1, where A is the cross-sectional 
area. As a result, the statistically averaged Gibbs free energy per unit 
volume of the crystal acquires an entropic contribution proportional to 
/,/2(4) 

goryst~,(n) = (el -- H~bo/4rt)n + (3r Ko(d/Z)n 

+ (ks T) 2 nZ(ln q)/g~ (25) 

3 See ref. 23 for explicit calculations for a quantum boson solid with a Yukawa potential in 
three dimensions. 

822/57/3-4-7 
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Only the contribution from the six nearest neighbors has been used to 
estimate the second term of (25). Because Ko(d/)O,,~exp(-d/)O as d,-~ 
n-1/2~0, we can neglect the energetic contribution to (25) and write 
(upon setting He1 = 4zcel/~b0) 

(ks T) 2 In q 
~o ( H -  Hc~)n q n2 + ... (26) gcrystal(n) = -- ~ ~'1 

Upon minimizing with respect to n, we find that the density of lines in the 
flux crystal is 

. 
n=~o~ ~ (H-He1) (27) 

and that the crystalline free energy is 
2~ (fiO/~l ( H - -  Hcl)  2 

(28) gcrsstal = (87rkB T) 2 In q 

The same result can be obtained using the analogy with two-dimensional 
bosons described in Section 2: the term proportional to n 2 in Eqs. (25) and 
(26) arises from the zero-point energy of a quantum solid. 

Because the entangled flux liquid phase corresponds to a Bose super- 
fluid, we can obtain its free energy using results for two-dimensional 
bosons with a repulsive potential. The ground-state energy per particle is 
known to be (24) 

1 
E (2xh2"~ n I i + O  (]n(17nX2i)] (29) 
N =  \--m--/ln( l/n22) 

where n is the boson number density and 2 is the interaction range. Upon 
constructing the free energy per unit area 

gliquid ---- (E-  # N ) / A  (30) 

and transcribing the results into the language of high-temperature super- 
conductors using Table I, we find that the energy of the entangled flux 
liquid is 

27z(ks T)  2 //2 
~o (H_Hcl)n + (31) gtiquid = -- ~ ~'1 ln(1/n).2) + "'" 

Minimizing with respect to/ /gives a flux line density (4) 

B 

~0 

q9~ ( H _  He1) In [ ( ~ _ ~ T ~  2 1 ] 
(4~kB T) 2 g~ r Hal) (32) 
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and a free energy 

gliquid - -  ~)2~1 (H -- Hcl )2 
8~(4~kB T) 2 

1 1 133) xln L \ ~ )  ~,(~o(n-n<~) 

Because of the logarithmic dependence on H-H<1 in (33), the free 
energy of the entangled liquid is always lower than that of the crystal in the 
dilute limit. The transition between these two states occurs when the free 
energies are equal, i.e., at a field H~(T), which we readily find to be given 
by 

6hx H x - H c l  (~_~__T) 2 1 = ~ const x (34) 
Hcl ,~1,71 

The width of the entangled flux liquid phase rises like T 2 at low tem- 
peratures. An analogous sliver of melted domain wall liquid appears 
between the commensurate and incommensurate phases in 1 +  1 
dimensions/14) Because ~12'13) el = (4~bo/22) In x, we can rewrite (34) as 

( kBZ)~ ) 2El (35) 
6h~ = const x \4rC~bo In ~c e-i 

which shows that the region occupied by the entangled flux liquid becomes 
large when the London penetration depth diverges I - 2 , , ~ I / ( T c - T )  x/z] 
near T~. 

Figure 6 shows schematic phase diagrams for BSCCO and YBCO, 
which combine the high-field Lindemann criterion melting curves of 
Houghton et aL (2~) with the low-field estimate of the melting curve dis- 
cussed above. 4 This phase diagram corrects an early guess (4) which did not 
account for the Lindemann criterion (5'21) and which incorrectly showed a 
finite range of entangled flux liquid at T = 0. The field is assumed to be per- 
pendicular to the CuO2 planes. The region occupied by the entangled flux 
liquid is much larger for BSCCO, because Mz/M a is much larger in this 
case. For  most conventional superconductors, the reentrant melting curve 
Hx(T) is indistinguishably close to H~(T) and H~2(T). The sliver of 
melted flux liquid close to H~I may be difficult to observe even in the 
high-T C materials. The mean-field transition line at H~2 need not be a sharp 

4 Phase diagrams similar to those in Fig. 6 have also been constructed by D. Huse. (25~ I am 
indebted to Dr. Huse for pointing out that one cannot simply set gi = (M• in 
Eqs. (34) and (35), because of residual electromagnetic couplings between vortices which 
invalidate Eq. (2) in the dilute limit. As Huse has shown, gl is of order ~ in this limit. For 
a discussion of this electromagnetic coupling in conventional superconductors (the DC 
transformer effect), see Ref. (26). 
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Fig. 6. Schematic phase diagrams for thick (L >> ~)  single-crystal samples of (a) BSSCO and 
(b) YBCO for magnetic fields H directed perpendicular to the CuO2 planes. The Meissner, 
Abrikosov flux lattice, and entangled flux liquid phases are shown. The melting curve Hx(T) 
was obtained by combining the Lindemann criterion calculations of Houghton et aL (zl) with 
the low-field result, Eq. (34). A thin sliver of entangled flux liquid phase is interposed between 
the Meissner and Abrikosov flux lattice phases at all nonzero temperatures. The curve Hc2(T), 
which need not be a sharp phase transition, marks the onset of the Meissner effect. 

phase transition when fluctuations are taken into account(l~ experi- 
mentally, it is defined by the onset of  an (incomplete) Meissner effect with 
decreasing temperatures. We have not  considered the possibility of an 
(possibly entangled) hexatic phase (9'1~ in this analysis. There can also be 
modifications due to the finite sample size L along the z direction. Strictly 
speaking, Hol = 0  for finite thickness films. (1~ Equat ion  (12), with ~z = 
gl /2kBTn,  defines a locus in the melted por t ion of  the phase diagram 
separating disentangled from entangled flux liquid regimes. In  the thermo- 
dynamic  limit L ~ o% however, the melted liquid is always entangled. 

4. P R O P E R T I E S  OF T H E  E N T A N G L E D  FLUX L I Q U I D  

The entangled flux liquid is a new phase of matter  of substantial 
interest in its own right. Of  particular interest is the vortex line correlation 
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function, which can be measured with neutron scattering. ~27) These 
experiments measure fluctuations in the local density of  flux lines, defined 
by 

N 

n(r•  z ) =  ~, 6Jr•  - r i ( z ) ]  (36) 
i = 1  

Neut ron  scattering measures 

S(q• q z ) =  ( I n ( q : ,  q~)l 2)  (37) 

where n ( q i ,  q=) is the Fourier  t ransform of n(r•  z). The physics, however, 
is more  conveniently discussed in terms of the partial Fourier  t ransform 

f ~ dqz S(q• z ) =  ~ ~ -  e-iq'z'~(q• qz) 

= ~n(q• z +z0)  n* (q• Zo)) (38) 

As illustrated in Fig. 7a, this correlat ion function reduces to the struc- 
ture function of a cross section of the vortex lines when z = 0. The correla- 

S (q.,~) 

qa. 

(a) 

~(q.~) 

(b) 
Fig. 7. (a) Partial structure function S(q• z) for an entangled liquid of vortex lines. For 
z = 0, this quantity is just the Fourier transform of the distribution of vortices in a constant-z 
cross section. S(q• decays exponentially with z. (b) Boson single-particle excitation 
spectrum which controls the decay of the z = 0 Fourier components in Fig. 2b according to 
Eq. (39). 
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tions in any such constant-z cross section should be similar to those of a 
two-dimensional liquid. Equation (38) describes more generally how the 
Fourier components of this 2D structure function decay along the z axis 
due to entanglement. As shown in ref. 5, this decay can be approximated by 

S(q• z) ~ S(q• z = O)e -~(q~)l~l/kBT (39) 

where e(qj_) is the excitation spectrum of the corresponding superfluid (see 
Fig. 7b). Although these calculations were carried out using approxima- 
tions suitable for a dilute gas of vortex lines, both the structure factor and 
excitation spectrum in Fig. 7 are sketched as one would expect them to be 
for heavily entangled flux liquid. Equation (39) corresponds to the "single- 
mode" approximation for superfluid dynamics. The excitation spectrum 
defines via Eq. (39) a q• correlation length 

II (q = ) =- kB T/~(q • ) (40) 

The quantity ~ll(q• is of the order of the entanglement correlation length 
~z [-see Eq. (8)] when q i  ~ 1/d, where d is an intervortex spacing. (5) 

It is also possible to derive the B ( H )  constitutive relation near Hcl 
[i.e., Eq. (32)] directly without appealing to the analogy with a dilute bose 
gas. ~5~ Equation (32) may be rewritten as 

F4_ g (q~o/3~2) -] 
B(H)~"4-~ ( H - H ~ I ) I n  [ t5 H-~--H~-~I J (41) 

where the key dimensionless parameter in the theory is 

4rc(kB T) 2 
(42) 

Although the parameter gl is small (gl ~ el) over much of the (/4, T)-plane, 
as pointed out by D. Huse, 4 it becomes of order e~ near Hc~. There is also 
a logarithmic divergence in the specific heat as H approaches Hc~ from 
above. (4) The coefficient of the divergence can be obtained by differen- 
tiating Eq. (33) with respect to temperature. The lower critical field itself is 
renormalized downward by fluctuations. (5) 

Our understanding of flux lines in high-temperature superconductors 
is developing rapidly on both the theoretical and experimental fronts. 
Much theoretical work remains to be done. I have not even discussed the 
statics and dynamics of flux lines in the presence of random pinning 
centers, a subject which is discussed briefly in ref. 5. Of particular interest 



Flux Lines in High-T c Superconductors 529 

in this regard  is ear ly work  by W 6 r d e n w e b e r  and Kes and by Brandt  on 
"d imens iona l  crossover"  in flux pinning,  which sugges t s  an entangled  
spaghet t i l ike  state due to p inning centers in thick samples  even in the 
absence of thermal  f luctuations.  (28) 
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